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ABSTRACT 

The Internet of Things (IoT) continues to expand rapidly, with projections exceeding 100 

billion connected devices by 2030—raising critical concerns regarding security, privacy, and 

scalability. Building upon our previous work [Sahu et al., 2025], this paper presents an 

enhanced blockchain-enabled security framework for IoT networks that integrates artificial 

intelligence (AI) and zero-knowledge proofs (ZKPs) for scalable and privacy-preserving 

operations. The proposed architecture extends the lightweight IoT-PBFT consensus protocol 

through a sharded blockchain design, enabling high-throughput and low-latency performance 

in ultra-dense IoT ecosystems. AI-driven anomaly detection is embedded for real-time threat 

mitigation, while ZKPs ensure data confidentiality without compromising transparency or 

auditability. Designed for deployment in resource-constrained environments, the framework 

minimizes computation and storage overhead while maintaining robust attack resistance. 

Experimental evaluations, including simulations and testbed deployment, demonstrate 

significant improvements in throughput (up to 500 tx/s), privacy preservation (99.9%), and 

threat detection accuracy (98.5%), outperforming state-of-the-art blockchain-IoT security 

models. This work establishes a foundation for secure, intelligent, and privacy-respecting IoT 

infrastructures of the future. 

 

Keywords: IoT security, blockchain, AI anomaly detection, zero-knowledge proofs, IoT- 

PBFT, sharded blockchain, privacy preservation 

 

1. INTRODUCTION 

The Internet of Things (IoT) is poised to exceed 100 billion connected devices by 2030, driving 

innovation in smart cities, healthcare, agriculture, and industrial automation. This exponential 

growth amplifies security and privacy challenges, as centralized IoT architectures remain 

vulnerable to single points of failure, distributed denial-of-service (DDoS) attacks, and data 

breaches. Resource-constrained IoT devices, with limited processing power and battery life, 

struggle to implement robust security protocols, exposing them to spoofing, tampering, and 

unauthorized access. High-profile incidents, such as the 2021 Verkada camera hack, highlight 
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the urgent need for decentralized, scalable, and privacy-preserving solutions. 

 

Our previous work [1] introduced a blockchain-enabled security framework for IoT networks, 

leveraging a permissioned blockchain with a lightweight consensus protocol (IoT-PBFT) and 

smart contracts for authentication, access control, and anomaly detection. The framework 

achieved significant improvements in authentication latency (150 ms), data integrity (99.8%), 

and energy efficiency (0.1 mJ/tx), validated through simulations. However, limitations such as 

ledger storage growth, reliance on semi-trusted edge nodes, and lack of real-world deployment 

testing suggest opportunities for enhancement, particularly in ultra-dense networks requiring 

high throughput and stringent privacy. 

 

This paper extends our prior framework by introducing three key innovations: (1) a sharded 

blockchain architecture to enhance scalability, (2) AI-driven anomaly detection for proactive 

threat mitigation, and (3) zero-knowledge proofs (ZKPs) for privacy-preserving data exchange. 

The enhanced framework, termed AI-ZKP-IoT, maintains compatibility with resource-

constrained devices while addressing dynamic trust management and confidentiality. A real-

world testbed deployment on Raspberry Pi devices complements simulations, validating 

performance in practical settings. 

 

1.1 Contributions 

• A sharded blockchain architecture extending IoT-PBFT, achieving up to 500 tx/s in ultra-

dense IoT networks. 

• AI-driven anomaly detection using federated learning, improving attack detection 

accuracy by 10% over rule-based smart contracts. 

• ZKP-based data exchange, ensuring 99.9% confidentiality without sacrificing 

transparency. 

• Real-world testbed deployment and simulations, demonstrating scalability, privacy, and 

resilience against advanced attacks. 

 

1.2 Paper Organization 

Section 2 reviews related work. Section 3 describes the enhanced framework. Section 4 outlines 

the methodology. Section 5 details implementation and testbed setup. Section 6 analyzes results, 

and Section 7 concludes with future directions. 

 

2. LITERATURE REVIEW 

2.1 IoT Security and Blockchain 

IoT security challenges include authentication, data integrity, and privacy in resource-

constrained environments. Traditional solutions like Public Key Infrastructure (PKI) and 

Transport Layer Security (TLS) are computationally intensive, unsuitable for low-power 

devices [2]. Lightweight cryptography, such as Elliptic Curve Cryptography (ECC), reduces 
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overhead but struggles with scalability in heterogeneous networks [3]. Recent advances 

propose hybrid cryptographic schemes, combining ECC with symmetric encryption to balance 

security and efficiency [11]. 

 

Blockchain offers a decentralized alternative. Our prior work [1] proposed IoT-PBFT, 

achieving 150 ms authentication latency and 99.8% data integrity. IoTChain [4] combines on-

chain and off-chain storage to reduce overhead but lacks real-time anomaly detection. 

FairAccess [5] uses smart contracts for access control, yet its centralized gateway limits 

decentralization. EdgeChain [6] integrates edge computing, but its consensus overhead hinders 

scalability. Sharded blockchain frameworks, such as those by Zhu et al. [12], improve 

throughput but require complex cross-shard coordination, untested in IoT contexts. 

 

2.2 AI in IoT Security 

AI enhances IoT security through anomaly detection and predictive analytics. Machine 

learning models, such as Random Forests, detect DDoS attacks with 95% accuracy [7]. 

Federated learning (FL) enables distributed training on IoT devices, preserving privacy [8]. 

For instance, Nguyen et al. [13] applied FL to detect intrusions in smart grids, achieving 96% 

accuracy. However, integrating AI with blockchain remains challenging due to computational 

overhead and model synchronization. Recent works explore lightweight neural networks for 

IoT [14], but their application in blockchain-based frameworks is limited. 

 

2.3 Privacy-Preserving Techniques 

Zero-knowledge proofs (ZKPs) enable verification without revealing data, ideal for IoT 

privacy. Zcash uses zk-SNARKs for anonymous transactions [9], but their complexity limits 

IoT applicability. Bulletproofs [10] offer lightweight ZKPs, with applications in confidential 

smart contracts [15]. Homomorphic encryption, explored by Liu et al. [16], supports private 

computations but incurs high overhead. Combining ZKPs with blockchain for IoT, as proposed 

by Wang et al. [17], shows promise but lacks real-world validation. 

 

2.4 Research Gaps 

• Scalability: Most blockchain frameworks, including our prior work [1], face 

throughput limitations in ultra-dense networks (>1,000 devices). Sharding solutions 

exist [12, 18], but IoT-specific optimizations are scarce. 

• Privacy: Existing solutions lack robust confidentiality mechanisms for sensitive IoT 

data (e.g., medical records) [19]. 

• AI Integration: Rule-based anomaly detection, as in [1], misses sophisticated attacks; 

AI-driven approaches are underutilized [20]. 

• Real-World Validation: Simulations dominate, with few frameworks tested on actual 

IoT hardware [21]. 
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This work addresses these gaps by extending IoT-PBFT with sharding, integrating federated 

learning for anomaly detection, and employing ZKPs for privacy, validated through 

simulations and a real-world testbed. 

 

3. PROPOSED FRAMEWORK: AI-ZKP-IOT 

3.1 Overview 

The proposed AI-ZKP-IoT framework enhances our previous work [1] by introducing three 

critical advancements: (i) a sharded permissioned blockchain architecture, (ii) AI-driven 

anomaly detection using federated learning, and (iii) zero-knowledge proof (ZKP)-based data 

exchange for privacy preservation. The architecture is divided into four primary layers: 

• IoT Device Layer – low-power, constrained sensors and actuators, 

• Edge/Gateway Layer – intermediary nodes for computation and model coordination, 

• Blockchain Network Layer – permissioned sharded blockchain with enhanced IoT-

PBFT consensus, 

• Application Layer – user interfaces, analytics, and system control. 

 

3.2 Framework Components 

3.2.1 Sharded IoT-PBFT Consensus 

To enhance scalability in ultra-dense IoT networks, we introduce sharding to the IoT-PBFT 

consensus mechanism. Each shard is responsible for processing a subset of transactions 

independently, thereby reducing the load on individual nodes and improving throughput. 

• A Merkle tree-based reconciliation protocol ensures inter-shard consistency. 

• Byzantine fault tolerance is maintained within each shard (i.e. 𝒇 ≤
𝒏−𝟏

𝟑
). 

• Performance Gain: Reduces consensus time by 40% and achieves 500 tx/s, a 150% 

improvement over the original IoT-PBFT protocol. 

 

3.2.2 AI-Driven Anomaly Detection 

A federated learning (FL)-based anomaly detection system is integrated to proactively identify 

threats such as DDoS, Sybil, and spoofing attacks. 

• A convolutional neural network (CNN) is trained collaboratively across edge nodes 

using local metrics (e.g., transaction rate, packet size). 

• Only model updates—not raw data—are exchanged, preserving privacy. 

• The global model is aggregated using secure multi-party computation (SMPC). 

• Accuracy: 98.5% on attack detection tasks. 

• Energy Overhead: 0.15 mJ per update, suitable for edge nodes. 
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3.2.3 ZKP-Based Data Exchange 

To ensure privacy without compromising verifiability, Zero-Knowledge Proofs (ZKPs) using 

Bulletproofs [10] are employed. 

• Devices generate ZKPs to prove conditions (e.g., “sensor value within safe range”) 

without revealing actual data. 

• Smart contracts verify ZKP commitments and store only hashes on the blockchain. 

• Confidentiality Achieved: 99.9% 

• Energy Use: 0.2 mJ per transaction — lightweight enough for constrained devices. 

 

3.2.4 Smart Contract Infrastructure 

Smart contracts, implemented in Go, are responsible for key operational roles: 

• Authentication Contract: Verifies ECC-based signatures and ZKP commitments 

during device registration. 

• Access Control Contract: Enforces hierarchical or role-based policies across device 

types. 

• Anomaly Contract: Triggers FL model updates and logs suspicious behavior to the 

blockchain. 

 

3.3 Architecture 

Figure 1 illustrates the high-level architecture of AI-ZKP-IoT. IoT devices interact with local 

edge nodes that manage federated learning, shard participation, and data aggregation. The 

blockchain network, using sharded IoT-PBFT, ensures decentralized consensus, while smart 

contracts and ZKPs operate across all layers to maintain privacy, trust, and automation. 
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Figure 1: High-Level Architecture of AI-ZKP-IoT 

3.4 Operational Workflow 

• Device Registration: Each IoT device registers through the edge node using ECC 

credentials and ZKP-authenticated claims. 

• Data Exchange: Devices encrypt data, generate ZKPs, and transmit only hashes to the 

blockchain. 

• Anomaly Detection: Edge nodes continuously train FL-based models and log anomalies 

using smart contracts. 

• Consensus: Transactions are validated by individual shards and reconciled via the global 

coordination protocol. 

 

3.5 Advantages 

• Scalability: Sharded architecture supports 500 tx/s, scalable for >1,000 devices. 

• Privacy: ZKPs provide confidential data validation without disclosure. 

• Security: AI-driven FL models detect complex attacks missed by rule-based logic. 

• Efficiency: Optimized for IoT hardware with a total overhead of 0.35 mJ/tx. 

 

4. METHODOLOGY 

This section outlines the system model, threat assumptions, simulation environment, and testbed 

configuration used to evaluate the AI-ZKP-IoT framework. The methodology captures both 

simulated and real-world conditions to assess performance under practical constraints. 
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4.1 System Model 

The system models an ultra-dense IoT network comprising 1,000 devices (sensors and actuators) 

and 20 edge nodes, representing smart city and industrial environments. IoT devices generate 

approximately 100 transactions per second (tx/s), distributed evenly across 5 blockchain shards. 

Each shard processes around 200 tx/s. The blockchain operates on a sharded IoT-PBFT 

consensus protocol, assuming 80% honest nodes in the network. 

 

4.2 Threat Model 

We extend the threat model from [Sahu et al., 2025] to include sophisticated, real-world attack 

scenarios: 

• Advanced DDoS: Coordinated flooding attacks with over 10,000 tx/s to disrupt 

consensus. 

• Sybil with Collusion: Multiple fake identities collude to manipulate transaction 

validation. 

• Data Leakage: Unauthorized interception of sensitive data during exchange. 

• Model Poisoning: Injection of malicious updates into federated learning models to 

compromise AI-based anomaly detection. 

 

4.3 Design Assumptions 

The framework design is based on the following assumptions: 

• IoT devices employ ECC for digital signatures and AES-128 for data encryption. 

• Edge nodes are equipped with at least 4 GB RAM, capable of running federated CNN 

models and verifying ZKPs. 

• ZKP verification is offloaded to edge nodes to reduce IoT device burden. 

• Shard rebalancing is dynamic to avoid performance bottlenecks. 

 

4.4 Simulation and Testbed Setup 

Simulation Environment: 

• Platform: Ubuntu 22.04 LTS, 32 GB RAM, 16-core CPU 

• Blockchain: Hyperledger Fabric v2.5 with Docker-based shard deployment 

• Network Emulation: NS-3 used to simulate network traffic and delays 

• AI Model: TensorFlow used to train federated CNNs on synthetic attack datasets 

• ZKP Framework: Bulletproofs compiled using libsnark and interfaced via Go 

•  
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Testbed Configuration: 

• IoT Nodes: 10 × Raspberry Pi 4 (4 GB RAM, Raspbian OS) 

• Edge Nodes: 5 × Linux servers (16 GB RAM, Ubuntu Server) 

• Inter-node Communication: gRPC and MQTT for edge-device messaging 

 

4.5 Evaluation Metrics 

Metric Definition 

Transaction Throughput Number of validated transactions per second across all shards 

Privacy Preservation Percentage of transactions protected using ZKPs (e.g., 99.9%) 

Attack Detection 

Accuracy 

True positive rate for identifying threats (e.g., Sybil, DDoS) using 

FL 

Energy Consumption Energy required per transaction or model update (measured in 

mJ) 

Consensus Latency Time from transaction broadcast to final commitment across 

shards (in ms) 

4.6 Algorithms 

 

Algorithm 1: Sharded IoT-PBFT 

 

Input: Transaction T, Shard set S, Node set N, Leader L 

Output: Consensus on T 

1. Assign T to shard s ∈ S based on device ID hash 

2. L_s broadcasts T to N_s (nodes in s) 

3. For each n ∈ N_s: 

4.   Verify T’s ZKP and signature 

5.   Vote “accept” or “reject” 

6. If ≥ 2/3 votes “accept”: 

7.   Append T to s’s ledger 

8.   Update cross-shard Merkle tree 

9. Else: 

10.  Discard T 

11. Return consensus result 
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Algorithm 2: FL-Based Anomaly Detection 

 

Input: Device data D, Local model M_i, Threshold T 

Output: Anomaly flag 

1. Train M_i on D_i (local data) 

2. Share M_i updates with global aggregator 

3. Aggregate updates to form M_global 

4. If M_global predicts anomaly score > T: 

5.   Flag device, trigger smart contract 

6. Return flag status 

 

5.  IMPLEMENTATION AND   EVALUATION 

 

This section details the implementation of the AI-ZKP-IoT framework and its evaluation through 

simulated and real-world scenarios. The framework was tested under normal and adversarial 

conditions to assess its performance, security, and scalability in ultra-dense IoT environments. 

 

5.1 Implementation 

 

The prototype was developed using modular microservice architecture: 

• Blockchain Platform: Hyperledger Fabric v2.5 with sharding achieved through custom 

chaincode modifications. 

• Smart Contracts: Developed in Go for authentication, access control, and anomaly 

handling. 

• Federated Learning (FL): Implemented using TensorFlow; CNNs trained on packet 

metadata (e.g., size, frequency). 

• Zero-Knowledge Proofs (ZKPs): Implemented via Bulletproofs using a Python library 

(libsnark); integrated into the blockchain with Go bindings. 

• Testbed Configuration: 

o Devices: 10 × Raspberry Pi 4 (4 GB RAM) as IoT nodes 

o Edge Nodes: 5 × Ubuntu 22.04 servers (8–16 GB RAM) 

o Connectivity: Wi-Fi network with ~50 ms latency 

 

5.2 Evaluation Scenarios 

 

The system was evaluated under five key conditions: 
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Scenario Description 

Normal Operation 1,000 devices generating 100 tx/s across 5 shards 

Advanced DDoS Attack 10,000 tx/s targeting 2 specific shards 

Sybil with Collusion 50 fake devices coordinating to skew consensus 

Data Leakage Attempted interception of encrypted medical sensor data 

Model Poisoning 20% of FL updates intentionally corrupted to test 

resilience 

 

5.3 Performance Optimization 

 

Performance was improved through targeted system-level enhancements: 

• Sharding: Dynamic shard load balancing increased overall throughput by 20%. 

• Federated Learning: Model pruning techniques reduced CNN training time by 15%. 

• ZKPs: Pre-computed cryptographic commitments lowered verification energy to 0.2 

mJ/tx. 

 

5.4 Evaluation Results 

 

Metric Value 

Max Throughput 500 tx/s (simulation), 435 tx/s (testbed) 

Detection Accuracy 98.5% (simulation), 97.8% (testbed) 

Data Confidentiality 99.9% via ZKPs 

Consensus Latency Avg. 142 ms (simulation), 170 ms (testbed) 

Total Energy Overhead 0.35 mJ/tx 

 

5.5 Deployment Challenges and Mitigations 

Challenge Impact Mitigation 

Cross-Shard Latency 

Spikes 

Delays in consensus during 

Merkle reconciliation 

Optimized Merkle tree 

structures and async 

processing 

FL Aggregation Delays Model sync jitter due to 

network instability 

Implemented asynchronous 

model updates 

Wi-Fi Instability Increased latency and 

retransmissions 

Added redundancy via 

MQTT QoS and retries 

 

6. RESULTS AND DISCUSSION 

This section presents a comprehensive evaluation of the AI-ZKP-IoT framework using 

simulation results, real-world testbed data, and comparative benchmarking against baseline 

systems. All results are averaged over 10 independent runs, each lasting 3,600 seconds. 

 

https://samagracs.com/samagracs-publication/


                                Innovation and Integrative Research Center Journal 
                            ISSN: 2584-1491 | www.iircj.org 

                Volume-3 | Issue-4 | April - 2025 | Page 288-302 

 

 

SamagraCS Publication House                                                                                                  298  

6.1 Quantitative Results 

• Metric Simulation Testbed Baseline [Sahu et al., 2025] 

• Throughput (tx/s) 500 450 200 

• Privacy Preservation 99.9% 99.9% 80% 

• Detection Accuracy 98.5% (DDoS) 97.8% (Sybil) 94.3% 

• Energy Consumption 0.35 mJ/tx — 0.1 mJ (blockchain-only) 

• Consensus Latency 120 ms 130 ms 150 ms 

• Energy breakdown: 0.1 mJ (IoT-PBFT) + 0.15 mJ (FL) + 0.1 mJ (ZKP) 

• Improvement: 150% higher throughput and 10% better accuracy than baseline 

 

6.2 Performance Graphs and Comparative Tables 

• Figure 2: Throughput vs. device count, showing sharding’s 150% improvement. 

 

• Figure 3: ROC curve for AI anomaly detection, with 98.5% AUC. 

 

• Table 1: Comparative Performance with Ethereum and IoT-PBFT. 

 

Figure 2: Throughput Scaling with Device Count 
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Figure 3: ROC Curve for AI-based Anomaly Detection 

Table 1: Performance Comparison with Existing Frameworks 

Metric AI-ZKP-IoT IoT-PBFT [4] Ethereum (PoW) 

Throughput (tx/s) 500 200 15 

Privacy (%) 99.9 80 50 

Detection Accuracy (%) 98.5 94.3 90 

Energy (mJ/tx) 0.35 0.1 1.0 

 

Figure 4: Comparative Performance with Ethereum and IoT-PBFT 

6.3 Comparative Analysis 

• Compared to our previous work [Sahu et al., 2025], the AI-ZKP-IoT framework achieves: 

• 150% higher throughput due to sharding, 
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• 10% better detection accuracy from FL-based anomaly detection, 

• Enhanced energy efficiency, balancing privacy, detection, and blockchain cost, 

• Ethereum's PoW system is 30× slower and 3× more energy-consuming. 

In contrast, centralized PKI-based systems offer lower latency (~100 ms) but fail under large-

scale DDoS attacks, maintaining only 60% uptime versus 98% in AI-ZKP-IoT. 

 

6.4 Key Insights 

• Scalability: Sharded blockchain ensures performance at scale, supporting real-time 

operations in smart cities. 

• Privacy: ZKPs effectively secure sensitive data (e.g., medical IoT) without revealing 

underlying values. 

• Security: AI-enhanced detection identifies coordinated attacks often missed by 

traditional rule-based methods. 

• Testbed Confirmation: Real-world deployment mirrored simulation results, validating 

practical applicability. Some latency variation due to Wi-Fi interference was mitigated 

using retransmission and buffering protocols. 

6.5 Limitations 

Despite the promising results, some limitations persist: 

• Ledger Storage Overhead: Sharded ledgers grow rapidly (up to 1 GB per shard per 

hour), highlighting the need for off-chain or archival storage techniques. 

• FL Resource Cost: Each model update consumes ~0.15 mJ, posing challenges for ultra-

low-power devices like wearables. 

• ZKP Complexity: While Bulletproofs are more efficient than zk-SNARKs, further 

optimization is required to bring overhead below 0.1 mJ/tx for next-gen IoT chips. 

 

7. CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

This paper extends our prior work [Sahu et al., 2025] with AI-ZKP-IoT, a blockchain-

enabled security framework for IoT networks. By integrating sharded IoT-PBFT, federated 

learning, and zero-knowledge proofs, it achieves: 

• 500 tx/s throughput, 150% higher than IoT-PBFT. 

• 99.9% data confidentiality via ZKPs. 

• 98.5% attack detection accuracy with AI. 

• 0.35 mJ/tx energy consumption, suitable for IoT. 

• The framework’s effectiveness is validated through simulations and a real-world 

Raspberry Pi testbed its scalability, privacy, and resilience, outperforming Ethereum, 
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centralized PKI, and our prior framework. AI-ZKP-IoT paves the way for secure, 

scalable, and private IoT ecosystems. 

7.2 Future Work 

• Deploy in large-scale smart city networks (>10,000 devices). 

• Optimize ZKP generation to <0.1 mJ/tx using zk-STARKs. 

• Integrate layer-2 solutions (e.g., state channels) for further scalability. 

• Enhance FL with differential privacy to prevent model inversion attacks. 

• Develop standardized APIs for interoperability with Zigbee and LoRaWAN. 
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