PLAY WITH

PYTHON

MR. PAWAN KUMAR

DR. ANUPA SINHA

MRS. AKANKSHA MISHRA

MRS. SUSHREE SASMITA DASH.

Play with

PYTHON

By

Mr. Pawan Kumar !
Dr. Anupa Sinha’

Mrs. Akanksha Mishra®
Mrs. Sushree Sasmita Dash*

*1, 2, 3, 4 Assistant Professor,
Department of CS & IT , Kalinga University, Kotni, Raipur, Chhattisgarh, 492001

Published by:

ISBN: 978-93-340-0763-3
978-93-340-0

ISBN 763-3

Date: 25-12-2023
Innovation and Integrative Research Center Journal
ISSN: 2584-1491.

Address:- Kota, Raipur, Chhattisgarh, India.
492001.

Contact No.- +91-8871386512

Email: connect@samagracs.com

© All Right Reserved
STATUTARY WARNING

Information contained in this book has been obtained by author from sources
believed to be reliable and are correct to the best of his knowledge. Every
effort has been made to avoid errors and omissions and ensure accuracy. Any
error or omission noted may be brought to the notice of the publisher which
shall be taken care of in forthcoming edition of this book. However, neither the
publisher nor the author guarantee the accuracy or completeness of any
information published herein, and neither the publisher nor author take any
responsibility of liability for any inconvenience, expenses, losses or damage to
anyone resulting from contents of this book

PREFACE

Welcome to "Play with Python"! This book is designed to be your companion on
an exciting journey through the world of programming using Python. Whether
you're a complete novice or an experienced coder looking to expand your skills,
this book offers something for everyone. Python is not just a programming
language; it's a powerful tool that can unlock a world of creativity, problem-
solving, and innovation. Its simplicity and readability make it an ideal choice for
beginners, while its versatility and vast ecosystem of libraries make it a favourite
among professionals across various fields.

In "Play with Python," we'll take a hands-on approach to learning. Instead of
drowning you in theory and syntax, we'll dive right into practical examples,
projects, and exercises that will have you coding from day one. Each chapter
builds upon the previous one, gradually introducing new concepts and techniques
while reinforcing what you've already learned. Whether you dream of building
your own web applications, analysing data to uncover insights, automating
repetitive tasks, or even delving into artificial intelligence and machine learning,
Python can take you there. And this book will be your guide along the way.

But remember, learning to code is like learning any other skill—it takes time,
practice, and patience. Don't be discouraged by setbacks or challenges. Embrace
them as opportunities to grow and improve. And always remember to have fun!
After all, that's what "Play with Python" is all about. So, grab your keyboard, fire
up your interpreter, and let's play with Python!

Warm regards,

Mr. Pawan Kumar,

Dr. Anupa Sinha,

Mrs. Akanksha Mishra,
Mrs. Sushree Sasmita Dash.

Table of Content

Serial Title Page
Number Number
1 Introduction to Python 1
2 Setting up Python 6
3 Variables and Data Types 13
4 Basic Operations 20
5 Control Flow 29
6 Data Structures 38
7 Functions 50
8 File Handling 56
9 Exception Handling 63
10 Object-Oriented Programming 68
(OOP)

11 Libraries and Modules 78
12 Introduction to NumPy and 86
Pandas
13 Basic Input/Output 98
14 Basic Concepts of Web 102
Development
15 Graphics Design in Python 109

Play With Python

1. Introduction to Python

Python, a dynamic and versatile programming language, has rapidly emerged as
a cornerstone in the world of software development. Created by Guido van Ros

Introduction to Python:

Python was created by Guido van Rossum, a Dutch programmer, in the late
1980s. Guido started working on Python in December 1989 and released its first
version, Python 0.9.0, in February 1991. He envisioned a programming
language that prioritized readability, simplicity, and developer productivity.
Over the years, Python has grown to become one of the most popular and
versatile programming languages, known for its clean syntax and extensive
standard library.

Guido van Rossum served as the "Benevolent Dictator For Life" (BDFL) of the
Python community until he stepped down from the role in July 2018. Despite
his step down, Guido remains a respected figure in the Python world, and his
contributions have profoundly influenced the development and success of
Python as a programming language.

Overview of Python's history and development.

Python's history and development span several decades, marked by steady
growth, community engagement, and adaptability. Here's an overview of key
milestones in Python's journey:

1. Inception (1989-1991): Python was conceived by Guido van Rossum, a
Dutch programmer, in the late 1980s. Van Rossum aimed to create a
language that combined the benefits of ABC and Modula-3, focusing on
simplicity and readability. The first official Python release, Python 0.9.0,
came in February 1991.

2. Python 1.0 (January 1994): The release of Python 1.0 marked a
significant milestone, solidifying Python's position as a capable and
versatile programming language. During this time, the community began
to form around the language, contributing to its early growth.

3. Python 2.0 and the Python Software Foundation (2000): Python 2.0,
released in October 2000, introduced list comprehensions, garbage

Play With Python

collection, and Unicode support. Around the same time, the Python
Software Foundation (PSF) was established as a non-profit organization
to promote, protect, and advance Python. This period saw increased
collaboration and community involvement.

4. Python 3.0 (December 2008): Python 3.0, also known as Python 3000 or
simply Py3k, marked a major shift in the language. It aimed to rectify
design flaws and introduce new features, which led to some backward
incompatibilities with Python 2. The decision to transition from Python 2
to Python 3 sparked discussions within the community and initiated a
gradual migration process.

5. Python 2 End of Life (January 1, 2020): With the community's
encouragement, Python 2 reached its end of life on January 1, 2020. This
milestone emphasized the importance of transitioning to Python 3,
ensuring that the community focused on the latest and most supported
version.

6. Continuous Development (2020s): Python's development has continued
with regular releases and enhancements. The language remains at the
forefront of technological advancements, with a strong focus on data
science, machine learning, web development, and more. The community,
guided by the Python Enhancement Proposal (PEP) process, actively
contributes to the language's growth and refinement.

7. Current State (2024): As of my last knowledge update in January 2022,
Python continued to be one of the most widely used programming
languages globally. Its popularity in various domains, including web
development, data science, artificial intelligence, and automation,
showcased its adaptability and relevance.

The language's evolution and robust community support make it a staple in the
toolkit of developers around the world.

Python's journey reflects its commitment to simplicity, readability, and
adaptability, making it a language that appeals to both beginners and seasoned
developers across diverse domains.

Pvython's popularity and use cases.

It seems there might be a slight confusion in your question. I'll provide
information on both IPython and Python, as they are related but distinct
concepts.

Play With Python

1. Python:

Python is a high-level, general-purpose programming language known for its
readability, simplicity, and versatility. Its popularity has grown significantly
over the years, making it one of the most widely used programming languages.
Python is employed in various domains, including:

e Web Development: Frameworks like Django and Flask enable
developers to build scalable and robust web applications.

e Data Science: Libraries like NumPy, pandas, and scikit-learn facilitate
data manipulation, analysis, and machine learning.

e Artificial Intelligence: Python has become a primary language for Al
and machine learning projects, thanks to frameworks like TensorFlow and
PyTorch.

e Automation and Scripting: Python's simplicity makes it ideal for
automating repetitive tasks and writing scripts for various purposes.

e Scientific Computing: Python is used in scientific research and
engineering for tasks involving numerical and scientific computing.

2. IPython:

[Python, on the other hand, is an interactive command-line shell for Python. It
provides an enhanced Read-Eval-Print Loop (REPL) with additional features
compared to the standard Python shell. Some key features of IPython include:

e Interactive Computing: [Python allows users to interactively explore
data, run code snippets, and experiment with Python syntax in a more
user-friendly environment than the default Python interpreter.

e Rich Output: [Python supports rich media output, including images,
videos, and interactive plots, enhancing the overall interactive experience.

e History and Command Editing: Users can access command history, edit
previous commands, and leverage various keyboard shortcuts for
improved productivity.

e Support for Parallel Computing: [Python supports parallel and
distributed computing, enabling users to harness the power of multicore
processors or distributed computing environments.

[Python is often used by data scientists, researchers, and educators who require
an interactive and exploratory environment for working with Python. Its
features make it particularly well-suited for tasks like data analysis, scientific
research, and educational purposes.

Play With Python

In summary, while Python serves as a general-purpose programming language
applicable to a wide range of domains, [Python complements Python by
offering an enhanced interactive environment tailored for exploration,
experimentation, and data-related tasks. Both Python and [Python contribute to
the overall ecosystem of tools available to developers and researchers.

Comparison with other programming languages.

Comparing programming languages can be complex and depends on various
factors, including the context of usage, project requirements, developer
preferences, and specific features of each language. Here's a broad comparison
of Python with some popular programming languages:

Python vs. Java:

e Syntax: Python's syntax is generally considered more concise and
readable than Java's.

e Performance: Java is often perceived as more performant than Python,
especially in large-scale enterprise applications.

e Use Cases: Python is favored for data science, machine learning, and
scripting, while Java i1s widely used for building enterprise-level
applications.

Python vs. JavaScript:

e Context of Use: Python is often used on the server side (Django, Flask),
in data science, and scripting. JavaScript is the primary language for web
development, both on the client side (browser) and server side (Node.js).

e Asynchronous Programming: JavaScript is inherently asynchronous,
making it well-suited for handling concurrent operations on the web.

Python vs. C++:

e Performance: C++ is generally faster than Python as it is a compiled
language, while Python is an interpreted language.

e Memory Management: C++ provides manual memory management,
giving developers more control, whereas Python has automatic memory
management through garbage collection.

e Use Cases: C++ is often used for system-level programming, game
development, and performance-critical applications, while Python is
preferred for its ease of use and readability.

Play With Python

Python vs. Ruby:

e Philosophy: Both Python and Ruby prioritize readability and developer
happiness, but Python has a stronger emphasis on simplicity.

e Community and Ecosystem: Python has a larger community and a
broader ecosystem, especially in scientific computing and machine
learning.

e Web Development: Ruby is well-known for the Ruby on Rails web
framework, while Python has frameworks like Django and Flask.

Python vs. C#:

e Platform: C# is primarily associated with the Microsoft .NET platform,
while Python is more platform-agnostic.

e Use Cases: C# is often used for Windows desktop applications, game
development with Unity, and enterprise-level applications. Python has
strengths in web development, data science, and artificial intelligence.

Python vs. Go:

e Concurrency: Go is designed with concurrency in mind, making it well-
**suited for building scalable and concurrent systems. Python also
supports concurrency but in a different manner.

e Performance: Go tends to have better performance in terms of raw speed
and efficiency for certain use cases.

e Use Cases: Go is commonly used for cloud services, networking, and
containerization (e.g., Kubernetes), while Python is versatile across
various domains.

Play With Python

2.

Setting up Python

Installing Python can be done using various methods, and two commonly used
approaches are via the official Python website and the Anaconda distribution.
Here's a guide for each method:

Installing Python from the Official Website:

Visit the Python Official Website:

Go to the Python official website.

Download Python:

Click on the "Downloads" tab.

You'll see the latest version of Python. If you're starting, it's
recommended to download the latest stable version.

Choose the installer based on your operating system (Windows, macOS,
or Linux).

Run the Installer:

For Windows: Double-click the downloaded .exe file and follow the
installation wizard.

For macOS: Double-click the downloaded .pkg file and follow the
installation instructions.

For Linux: Open a terminal, navigate to the downloaded file's directory,
and run the installation command (replace X.Y with the Python version):

sudo apt-get update

sudo apt-get install pythonX.Y
Verify Installation:

Open a command prompt or terminal.

Type python --version or python3 --version and press Enter to ensure
Python is installed.

Play With Python

Installing Python using Anaconda:

Anaconda is a distribution that includes Python, popular libraries, and tools for
data science.

Download Anaconda:

e Visit the Anaconda download page.

e Choose the appropriate version for your operating system (Windows,
macOS, or Linux).

Run the Installer:

e For Windows: Double-click the downloaded .exe file and follow the
installation wizard.

e For macOS: Double-click the downloaded .pkg file and follow the
installation instructions.

e For Linux: Open a terminal, navigate to the downloaded file's directory,
and run the installation command:

bash Anaconda3-X.Y.Z-Linux-x86_64.sh

Follow the prompts to complete the installation.

Verify Installation:

e Open a new terminal or command prompt.

e Type ‘conda --version ‘ to verify that the Anaconda package manager is
installed.

e Type h)ython --Versi0n| to check the Python version.

Update Anaconda:

e It's a good practice to regularly update Anaconda. In the terminal or
command prompt, run:

conda update --all

Play With Python

These methods provide a straightforward way to install Python on your system.
The choice between the official website and Anaconda depends on your specific
needs. Anaconda is particularly useful for data science projects, as it comes with
pre-installed libraries like NumPy, pandas, and Jupyter Notebook.

Choosing and setting up a code editor.

Choosing and setting up a code editor is an important step in the development
process, as it significantly influences your coding experience. Here's a guide to
help you choose and set up a code editor for Python development:

1. Choosing a Code Editor:
a. Visual Studio Code (VSCode):

Pros:

e Lightweight and fast.

e Excellent Python support with extensions.

e Rich ecosystem with a variety of extensions for different languages.
e Integrated terminal and debugging tools.

Cons:

e Requires some configuration for optimal Python support.

b. PyCharm:
Pros:

e Robust IDE specifically designed for Python.
e Smart code completion and navigation.
e Integrated testing and debugging tools.

Cons:

e Heavier compared to lightweight editors.

c. Atom:
Pros:

e Highly customizable.

Play With Python

e Large library of community-contributed packages.
Cons:

e May require additional packages for optimal Python development.

d. Sublime Text:
Pros:

e Extremely fast and lightweight.
e Large selection of plugins and themes.

Cons:

e Less integrated Python support compared to some IDEs.

2. Setting Up Visual Studio Code (VSCode) as an Example:

a. Download and Install:

e Download VSCode from the official website.
e Follow the installation instructions for your operating system.

b. Python Extension:

e Open VSCode and go to the Extensions view by clicking on the
Extensions icon in the Activity Bar on the side of the window.

e Search for "Python" and install the one published by Microsoft.

e This extension provides language support, debugging, linting,
IntelliSense, and more.

¢. Setting Up Virtual Environment:

e Open a terminal in VSCode.
e C(reate a virtual environment using the following commands:
python -m venv veny|

e This creates a virtual environment named 'venv'.
e Activate the virtual environment:

Play With Python

For Windows:

. \Wwenv\Scripts\activate
For macOS/Linux:
source venv/bin/activate

d. Configure Python Interpreter:

In the bottom-right corner of VSCode, click on the interpreter version (it will
show "Select Python Interpreter").

Choose the interpreter from the virtual environment you just created.
e. Install Additional Extensions (Optional):

Explore and install additional extensions based on your preferences, such as Git
integration, themes, or linting tools.

f. Start Coding:

e C(Create a new Python file (e.g., main.py).
e Write your Python code and run it from within VSCode.

3. Additional Tips:

Customization: Explore VSCode settings (Ctrl + ,) to customize the editor
according to your preferences.

Install themes and icons from the Visual Studio Code marketplace to
personalize your coding environment.

Configuring the development environment.

Configuring a development environment for Python involves setting up various
tools, dependencies, and configurations to ensure a smooth and productive
coding experience. Here's a comprehensive guide to help you configure your
Python development environment:

1. Install Python:

Download and install the latest version of Python from the official Python
website or use a package manager like apt (for Linux) or Homebrew (for
macOS).

2. Setting Up a Virtual Environment:

e Use virtual environments to isolate project dependencies.
e Open a terminal and navigate to your project directory.

Play With Python

e (reate a virtual environment:
python -m venv ven|

Activate the virtual environment:

For Windows:

\venv\Scripts\activate

For macOS/Linux:

source venv/bin/activate

3. Install a Code Editor:

e Choose a code editor based on your preferences (e.g., Visual Studio Code,
PyCharm, Atom, Sublime Text).

e Follow the installation and setup instructions for your chosen editor.

4. Configure Code Editor for Python:

e Install Python extensions for your editor (e.g., Python extension for
Visual Studio Code).

e Configure the Python interpreter in your editor to use the virtual
environment you created.

5. Version Control (Optional):

e Install Git for version control.
e Configure Git with your username and email:

git config --global user.name "Your Name"

git config --global user.email "your.email@example.com"

6. Package Management:

e Familiarize yourself with Python package management tools.
e Use pip to install project dependencies:

pip install package-name

7. Useful Python Packages: Install common Python packages for development:

pip install numpy pandas matplotlib requests

Play With Python

8. Database Setup (Optional): Install and configure any databases you plan to
use (e.g., SQLite, PostgreSQL, MySQL).

9. Testing Setup (Optional): Install testing frameworks like pytest:

pip install pytest

10. Configure Environment Variables:

e Manage sensitive information or configuration settings using
environment variables.

o Consider using tools like python-dotenv for loading environment
variables from a .env file.

11. Explore Editor Settings and Extensions:

e Customize your code editor with themes, extensions, and settings that
enhance your workflow.

e Familiarize yourself with keyboard shortcuts for efficient coding.

Play With Python

3. Variables and Data Types

In Python, declaring and initializing variables is a straightforward process.
Unlike some other programming languages, Python is dynamically typed, which
means you don't need to explicitly declare the data type of a variable. Here's
how you can declare and initialize variables in Python:

1. Basic Variable Assignment:

You can assign values to variables in a single line, and Python will determine
the data type dynamically.

Integer variable
age =25

Float variable
height = 5.9

String variable
name = "John Doe"
Boolean variable

is_student = True

2. Multiple Assignments:

You can assign values to multiple variables in a single line.

Multiple assignments
x,yz=35 1015

3. Reassigning Variables:

You can change the value of a variable by assigning it a new value.

Play With Python

Reassigning a variable
count = 10

count = count + 1 # Incrementing the value

4. Dynamic Typing:

Python is dynamically typed, so you can change the type of a variable during
runtime.python

Dynamic typing
dynamic var = 42

print(dynamic_var) # Output: 42

dynamic var = "Hello"

print(dynamic_var) # Output: Hello

5. None Type:

In Python, you can use the None type to represent the absence of a value or a
null value.

None type

result = None

6. Type Annotations (Optional):

Although Python is dynamically typed, you can use type annotations to hint the
type of a variable. This is optional and mainly used for documentation and type
checking.

Type annotations

my variable: int = 42

Play With Python

7. Constants (Convention):

While Python doesn't have constants, it's a convention to use uppercase names
for variables that should be treated as constants.

Constants (by convention)

PI=3.14

8. Global and Local Variables:

Understanding the scope of variables is important. Variables declared inside a
function are considered local unless explicitly stated otherwise.

Global variable
global var = 100
def my function():
Local variable
local var = 50
print(global var) # Accessing global variable

print(local _var) # Accessing local variable

my_function()

In Python, variables are created when you first assign a value to them, and their
type is determined dynamically. This flexibility contributes to the simplicity and
readability of Python code.

Examples of integers, floats, strings. and booleans:-

Certainly! Here are examples of integers, floats, strings, and booleans in
Python:

1. Integers:

Example of integers
age =25

Inside this book

"Play with Python" is your comprehensive companion for diving into the world of Python programming.
Through a blend of hands-on examples, stimulating projects, and thought-provoking exercises, you'll embark on
a journey of skill acquisition and mastery. Whether you're a beginner eager to grasp the fundamentals or a
seasoned coder looking to expand your repertoire, this book caters to all levels of expertise. Explore the
versatility of Python as you delve into web development, data analysis, automation, artificial intelligence, and
beyond. Each chapter builds upon the last, guiding you through a structured learning experience designed to
reinforce concepts and foster proficiency. Along the way, you'll discover the joy of problem-solving and the
satisfaction of creating practical solutions using Python. With its accessible approach and practical focus, "Play
with Python" ensures that learning to code is not only educational but also enjoyable. So, grab your keyboard,
ignite your curiosity, and embark on a rewarding journey of exploration and discovery with Python.

Mr. Pawan Kumar Dr. Anupa Sinha Mrs. Akanksha Mrs. Sushree
Mishra Sasmita Dash

SRRV ERECTIEUEERER Innovation and Integrative Research Center Journal
ISSN: 2584-1491
Address:- Kota, Raipur, Chhattisgarh, India.
492001, Contact No.- +91-8871386512
Email: connect@samagracs.com

