
Innovation and Integrative Research Center Journal
ISSN: 2584-1491 |www.iircj.org

Volume-1|Issue-3| Nov-2023|Page 11- 17

SamagraCS Publication House 11

Enhancing User Experience with Customized Progress Indicators in Flutter

1Rahul Chandrakar

Assistant Professor,

Department of Information Technology

Pt. Ramsakha Upadhyay College, Gudhiyari,

Raipur, Chhattisgarh, India.

rahulchandrakar52@gmail.com

Abstract:

Progress indicators play a crucial role in modern user interfaces, providing visual

feedback to users about ongoing processes and enhancing user experience. In

Flutter, a popular cross-platform framework for mobile app development,

developers can utilize various types of progress indicators, including circular and

linear indicators, to indicate the progress of tasks. This research paper explores

the implementation and customization of circular progress indicators in Flutter,

focusing on both indeterminate and determinate types. Additionally, it discusses

the significance of progress indicators in app development and provides practical

guidance on integrating and customizing them effectively.

Keyword: Flutter, Progress Indicator, Dart, Mobile Application.

Introduction:

In today's fast-paced digital world,

users expect applications to provide

immediate feedback and seamless

experiences. Progress indicators are

essential UI elements that inform

users about ongoing processes, such

as loading content, downloading files,

or processing data. These indicators

reassure users that their actions are

being processed and help manage

expectations regarding wait times.

Flutter, developed by Google, has

gained popularity among developers

for its ability to build beautiful and

high-performance mobile

applications for Android, iOS, web,

and desktop platforms from a single

codebase. One of the key components

of Flutter's UI toolkit is the progress

indicator widget, which comes in

various forms, including circular and

linear types.

This research paper focuses on the

Circular Progress Indicator in Flutter,

exploring its types, customization

options, and implementation

techniques. By understanding how to

effectively utilize and tailor circular

https://iircj.org/
https://iircj.org/
https://iircj.org/
https://samagracs.com/samagracs-publication/
mailto:rahulchandrakar52@gmail.com

Innovation and Integrative Research Center Journal
ISSN: 2584-1491 |www.iircj.org

Volume-1|Issue-3| Nov-2023|Page 11- 17

SamagraCS Publication House 12

progress indicators, developers can

create visually appealing and user-

friendly applications.

Circular Progress Indicator:

The CircularProgressIndicator

widget in Flutter is designed to

display progress along a circular path.

It serves as a visual representation of

ongoing tasks, spinning to indicate

activity and completion status. There

are two main types of circular

progress indicators: indeterminate

and determinate.

Indeterminate Circular Progress

Indicator:

The indeterminate circular progress

indicator does not display a specific

value at any given time. Instead, it

continuously spins to signify that

progress is being made without

indicating how much work remains.

In Flutter, creating an indeterminate

progress bar involves setting the value

property to null.

CircularProgressIndicator();

Determinate Circular Progress

Indicator:

In contrast, the determinate circular

progress indicator provides a specific

value at each instance, indicating the

progress completed. The value

property of the

CircularProgressIndicator widget

ranges from 0.0 to 1.0, where 0.0

represents the start of progress, and

1.0 signifies completion.

CircularProgressIndicator(

 value: 0.7,

);

Customization options for circular

progress indicators include properties

such as backgroundColor,

valueColor, and strokeWidth. These

properties allow developers to adjust

the appearance of the indicator to

match the app's design and branding.

Linear Progress Indicator:

In addition to circular progress

indicators, Flutter also offers linear

progress indicators for displaying

progress in a linear direction or along

a line. Similar to circular indicators,

linear indicators can be either

indeterminate or determinate.

Indeterminate Linear Progress

Indicator:

The indeterminate linear progress

indicator, like its circular counterpart,

does not display a specific value at

any given time. It signifies ongoing

progress without indicating the

remaining work.

Determinate Linear Progress

Indicator:

https://iircj.org/
https://iircj.org/
https://iircj.org/
https://samagracs.com/samagracs-publication/

Innovation and Integrative Research Center Journal
ISSN: 2584-1491 |www.iircj.org

Volume-1|Issue-3| Nov-2023|Page 11- 17

SamagraCS Publication House 13

On the other hand, the determinate

linear progress indicator provides a

specific value at each instance,

indicating the progress completed.

Similar to circular progress indicators,

linear progress indicators can be

customized using properties such as

backgroundColor, valueColor, and

minHeight.

Implementing Progress Indicators

in Flutter:

To implement progress indicators in a

Flutter application, developers can

follow a straightforward process:

1. Import the material.dart

package to utilize Flutter's

progress indicator widgets.

2. Create a new MaterialApp

widget as the root of the

application.

3. Define a StatelessWidget to

display the progress indicators.

4. Run the application to see the

progress indicators in action.

By following these steps, developers

can quickly integrate both circular and

linear progress indicators into their

Flutter applications.

Customizing Progress Indicators:

Flutter provides various

customization options for progress

indicators, allowing developers to

tailor the appearance of indicators to

suit their application's design.

Common customization options

include changing the background

color, value color, stroke width, and

minimum height.

Changing the Background Color:

Developers can adjust the background

color of progress indicators using the

backgroundColor property.

For Circular:

CircularProgressIndicator(

 backgroundColor: Colors.redAccent,

);

For Linear:

LinearProgressIndicator(

 backgroundColor: Colors.redAccent,

);

Changing the Value Color:

The value color represents the color of

the progress indicator's value.

Developers can modify the value

color using the valueColor property.

For Circular:

CircularProgressIndicator(

 valueColor:

AlwaysStoppedAnimation(Colors.green),

);

For Linear:

LinearProgressIndicator(

https://iircj.org/
https://iircj.org/
https://iircj.org/
https://samagracs.com/samagracs-publication/

Innovation and Integrative Research Center Journal
ISSN: 2584-1491 |www.iircj.org

Volume-1|Issue-3| Nov-2023|Page 11- 17

SamagraCS Publication House 14

 valueColor:

AlwaysStoppedAnimation(Colors.green),

);

Changing the Stroke Width:

The strokeWidth property defines the

width of the line that draws the circle

in circular progress indicators.

Developers can adjust the stroke

width to achieve the desired

appearance.

CircularProgressIndicator(

 strokeWidth: 10,

);

Changing the Minimum Height:

In linear progress indicators, the

minHeight property specifies the

minimum height of the line that draws

the indicator.

LinearProgressIndicator(

 minHeight: 20,

);

By customizing these properties,

developers can create progress

indicators that align with their

application's visual identity and

enhance the user experience.

Putting it all together:

import 'package:flutter/material.dart';

void main() {

 runApp(MyApp());

}

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 home: ProgressIndicatorsDemo(),

);

 }

}

class ProgressIndicatorsDemo extends

StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text('Progress Indicators

Demo'),

),

 body: Center(

 child: Column(

 mainAxisAlignment:

MainAxisAlignment.center,

 children: [

 CircularProgressIndicatorDemo(),

 SizedBox(height: 20),

 LinearProgressIndicatorDemo(),

],

),

https://iircj.org/
https://iircj.org/
https://iircj.org/
https://samagracs.com/samagracs-publication/

Innovation and Integrative Research Center Journal
ISSN: 2584-1491 |www.iircj.org

Volume-1|Issue-3| Nov-2023|Page 11- 17

SamagraCS Publication House 15

),

);

 }

}

class CircularProgressIndicatorDemo

extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return Column(

 children: [

 Text(

 'Circular Progress Indicator',

 style: TextStyle(fontSize: 20,

fontWeight: FontWeight.bold),

),

 SizedBox(height: 10),

 CircularProgressIndicator(),

 SizedBox(height: 10),

 Text('Indeterminate'),

 SizedBox(height: 10),

 CircularProgressIndicator(

 value: 0.5,

 backgroundColor: Colors.grey,

 valueColor:

AlwaysStoppedAnimation<Color>(Colors.

blue),

 strokeWidth: 6,

),

 SizedBox(height: 10),

 Text('Determinate'),

],);}}

class LinearProgressIndicatorDemo

extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return Column(

 children: [

 Text(

 'Linear Progress Indicator',

 style: TextStyle(fontSize: 20,

fontWeight: FontWeight.bold),

),

 SizedBox(height: 10),

 LinearProgressIndicator(),

 SizedBox(height: 10),

 Text('Indeterminate'),

 SizedBox(height: 10),

 LinearProgressIndicator(

 value: 0.7,

 backgroundColor: Colors.grey,

 valueColor:

AlwaysStoppedAnimation<Color>(Colors.

green),

 minHeight: 10,

),

 SizedBox(height: 10),

 Text('Determinate'),

],);}}

Output:

https://iircj.org/
https://iircj.org/
https://iircj.org/
https://samagracs.com/samagracs-publication/

Innovation and Integrative Research Center Journal
ISSN: 2584-1491 |www.iircj.org

Volume-1|Issue-3| Nov-2023|Page 11- 17

SamagraCS Publication House 16

Conclusion:

Progress indicators play a vital role in modern application development,

providing users with visual feedback about ongoing processes. In Flutter,

developers have access to a versatile set of progress indicator widgets, including

circular and linear types, which can be easily integrated and customized.

In this research paper, we explored the Circular Progress Indicator in Flutter,

discussing its types, customization options, and implementation techniques. By

understanding the significance of progress indicators and mastering their

implementation, developers can create applications that offer a seamless and

engaging user experience.

By following the practical guidance provided in this paper, developers can

leverage Flutter's progress indicator widgets to enhance the visual appeal and

functionality of their applications. Experimenting with different customization

options allows developers to create unique and visually appealing progress

indicators that align with their application's design guidelines.

https://iircj.org/
https://iircj.org/
https://iircj.org/
https://samagracs.com/samagracs-publication/

Innovation and Integrative Research Center Journal
ISSN: 2584-1491 |www.iircj.org

Volume-1|Issue-3| Nov-2023|Page 11- 17

SamagraCS Publication House 17

In conclusion, progress indicators are essential elements in Flutter app

development, and by incorporating them effectively, developers can create

applications that delight users and drive engagement.

References:

1. Watanabe, Y., Suzuki, S., Sugihara, M., & Sueoka, Y. (2002). An experimental study of paper

flutter. Journal of fluids and Structures, 16(4), 529-542.

2. Garrick, I. E., and Wilmer H. Reed III. "Historical development of aircraft flutter." Journal of

Aircraft 18, no. 11 (1981): 897-912.

3. Windmill, Eric. Flutter in action. Simon and Schuster, 2020.

4. Watanabe, Y., Isogai, K., Suzuki, S. and Sugihara, M., 2002. A theoretical study of paper

flutter. Journal of fluids and structures, 16(4), pp.543-560.

https://iircj.org/
https://iircj.org/
https://iircj.org/
https://samagracs.com/samagracs-publication/

